Analysis of Temporal Interactions with Link Streams

Matthieu Latapy, Tiphaine Viard, Clémence Magnien

http://complexnetworks.fr
latapy@complexnetworks.fr
LIP6 – CNRS and Sorbonne Université
Paris, France
interactions over time

- a, b, c, and d for 10 time units
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.
interactions over time

- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.
• a, b, c, and d for 10 time units
• a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
• a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.

how to describe such data?
structure or dynamics

信号分析，时间序列 → 动态

图论
网络科学

- 结构
- 动态

- 图序列
- 时间片
- 信息损失
- 什么片？

度数
密度
路径
structure and dynamics?

Time slices → graph sequence
structure and dynamics?

signal analysis, time series \(\rightarrow\) dynamics

time slices \(\rightarrow\) graph sequence

information loss
what slices?
graph sequences?
structure and dynamics

MAG / temporal graphs

TVG

lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...
structure and dynamics

MAG / temporal graphs

lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...
what we propose

deal with the stream directly

stream graphs and link streams

graph theory
network science

signal analysis, time series

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal
what we propose

deal with the stream directly

stream graphs and link streams

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal
graph-equivalent streams

stream with no dynamics:
 nodes always present, ⇐⇒ graph
 either always or never linked

\begin{align*}
 \text{a} & \quad \cdots \quad \text{b} \\
 & \quad \cdots \quad \text{c} \\
 & \quad \cdots \quad \text{d} \\
 \text{e} & \quad \cdots
\end{align*}
graph-equivalent streams

stream with no dynamics:
- nodes always present,
- either always or never linked

\[\iff \quad \text{graph} \]

\[
\begin{array}{cccccc}
& a & & & & \\
0 & 2 & 4 & 6 & 8 & \text{time} \\
\hline
b & a & & & & \\
c & a & a & & & \\
d & a & b & b & & \\
e & a & b & c & c & \\
\end{array}
\]

stream properties \(\iff \) **graph properties**

\(\iff \) \text{generalizes graph theory}
very careful generalization of the most basic concepts
stream graphs and link streams
numbers of nodes and links
clusters and induced sub-streams
density and paths

building blocks for higher-level concepts
neighborhood and degrees
clustering coefficient
betweenness centrality
many others

+ ensure consistency with graph theory
+ ensure classical relations are preserved
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set
$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$
i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

- T: time interval, V: node set
- $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{t, (t, v) \in W\}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{t, (t, uv) \in E\}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph \(G = (V, E) \) with \(E \subseteq V \otimes V \)

\(uv \in E \iff u \text{ and } v \text{ are linked} \)

Stream graph \(S = (T, V, W, E) \)

- \(T \): time interval, \(V \): node set
- \(W \subseteq T \times V, \ E \subseteq T \times V \otimes V \)

\((t, v) \in W \iff v \text{ is present at time } t \)

\(T_v = \{t, (t, v) \in W\} \)

\((t, uv) \in E \iff u \text{ and } v \text{ are linked at time } t \)

\(T_{uv} = \{t, (t, uv) \in E\} \)

\((t, uv) \in E \) requires \((t, u) \in W \) and \((t, v) \in W \)

\(i.e. \ T_{uv} \subseteq T_u \cap T_v \)
Definition of stream graphs

Graph $G = (V, E)$ with $E \subseteq V \otimes V$

$uv \in E \iff u$ and v are linked

Stream graph $S = (T, V, W, E)$

T: time interval, V: node set
$W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

$(t, v) \in W \iff v$ is present at time t

$T_v = \{ t, (t, v) \in W \}$

$(t, uv) \in E \iff u$ and v are linked at time t

$T_{uv} = \{ t, (t, uv) \in E \}$

$(t, uv) \in E$ requires $(t, u) \in W$ and $(t, v) \in W$

i.e. $T_{uv} \subseteq T_u \cap T_v$
definition of stream graphs

Graph \(G = (V, E) \) with \(E \subseteq V \otimes V \)

\(uv \in E \iff u \text{ and } v \text{ are linked} \)

Stream graph \(S = (T, V, W, E) \)

- \(T \): time interval, \(V \): node set
- \(W \subseteq T \times V \), \(E \subseteq T \times V \otimes V \)

\((t, v) \in W \iff v \text{ is present at time } t\)

\[T_v = \{ t, (t, v) \in W \} \]

\((t, uv) \in E \iff u \text{ and } v \text{ are linked at time } t\)

\[T_{uv} = \{ t, (t, uv) \in E \} \]

\((t, uv) \in E \text{ requires } (t, u) \in W \text{ and } (t, v) \in W\)
i.e. \(T_{uv} \subseteq T_u \cap T_v \)
an example

\[T = [0, 10] \quad V = \{a, b, c, d\} \]

\[W = T \times \{a\} \cup ([0, 4] \cup [5, 10]) \times \{b\} \cup [4, 9] \times \{c\} \cup [1, 3] \times \{d\} \]

\[T_a = T \quad T_b = [0, 4] \cup [5, 10] \quad T_c = [4, 9] \quad T_d = [1, 3] \]

\[E = ([1, 3] \cup [7, 8]) \times \{ab\} \cup [6, 9] \times \{bc\} \cup [2, 3] \times \{bd\} \]

\[T_{ab} = [1, 3] \cup [7, 8] \quad T_{bc} = [6, 9] \quad T_{bd} = [2, 3] \quad T_{ad} = \emptyset \]
a few remarks

works with... discrete time, continuous time, instantaneous interactions or with durations, directed, weighted, bipartite...

if \(\forall v, \ T_v = T \) then \(S \sim L = (T, V, E) \) is a link stream

if \(\forall u, v, \ T_{uv} \in \{ T, \emptyset \} \) then \(S \sim G = (V, E) \) is a graph-equivalent stream
size of a stream graph

How many nodes? How many links?

| T_a | = 10 ≠ | T_d | = 2

\[n = |T_a| + |T_b| + |T_c| + |T_d| = 10 + 10 + 0.9 + 0.5 + 0.2 = 22.6 \text{ nodes} \]

\[m = |T_{ab}| + |T_{bc}| + |T_{bd}| = 0.3 + 0.3 + 0.1 = 0.7 \text{ links} \]
Size of a stream graph

How many nodes? How many links?

\[n = \sum_{v \in V} \frac{|T_v|}{|T|} \]

\[n = \frac{|T_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|T_d|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6 \text{ nodes} \]
size of a stream graph

How many nodes? How many links?

\[n = \sum_{v \in V} \frac{|T_v|}{|T|} \]

\[m = \sum_{uv \in V \otimes V} \frac{|T_{uv}|}{|T|} \]

\[n = \frac{|T_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|T_d|}{10} = 1 + 0.9 + 0.5 + 0.2 = 2.6 \text{ nodes} \]

\[m = \frac{|T_{ab}|}{10} + \frac{|T_{bc}|}{10} + \frac{|T_{bd}|}{10} = 0.3 + 0.3 + 0.1 = 0.7 \text{ links} \]
clusters, sub-streams

Cluster in $G = (V, E)$: a subset of V.
Cluster in $S = (T, V, W, E)$: a subset of $W \subseteq T \times V$.

$$C = [0, 2] \times \{a\} \cup ([0, 2] \cup [6, 10]) \times \{b\} \cup [4, 8] \times \{c\}$$

$S(C)$ sub-stream induced by C

$S(C) = (T, V, C, E_C)$

\leftrightarrow properties of (sub-streams induced by) clusters
clusters, sub-streams

Cluster in $G = (V, E)$: a subset of V.
Cluster in $S = (T, V, W, E)$: a subset of $W \subseteq T \times V$.

$$C = [0, 2] \times \{a\} \cup ([0, 2] \cup [6, 10]) \times \{b\} \cup [4, 8] \times \{c\}$$

$S(C)$ sub-stream induced by C
$$S(C) = (T, V, C, E_C)$$

→ properties of (sub-streams induced by) clusters
neighborhood

in $G = (V, E)$: $N(v) = \{u, uv \in E\}$

in $S = (T, V, W, E)$: $N(v) = \{(t, u), (t, uv) \in E\}$

$N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\}$

$N(v)$ is a cluster
in G and in S:

\[d(v) \text{ is the size of } N(v) \]

\[N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\} \]

\[d(d) = \frac{|[2, 3] \cup [5, 10]|}{10} + \frac{|[5.5, 9]|}{10} = 0.6 + 0.35 = 0.95 \]

- degree distribution, average degree, etc
- if graph-equivalent stream then graph degree
- relation with \(n \) and \(m \)
in G:
proba two random nodes are linked
\[\delta(G) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{2 \cdot m}{n \cdot (n-1)} \]

in S:
proba two random nodes are linked at a random time instant
\[\delta(S) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_u \cap T_v|} \]
Density

In G:
probabilty two random nodes are linked

$$\delta(G) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{2 \cdot m}{n \cdot (n-1)}$$

In S:
probabilty two random nodes are linked at a random time instant

$$\delta(S) = \frac{\text{nb links}}{\text{nb possible links}} = \frac{\sum_{u \in V \otimes V} |T_{uv}|}{\sum_{u \in V \otimes V} |T_u \cap T_v|}$$

- if graph-equivalent stream then graph density
- relation with n, m, and average degree
in G: sub-graph of density 1
all nodes are linked together

in S: sub-stream of density 1
all nodes interact all the time
clustering coefficient

in G and in S:
density of the neighborhood

\(cc(v) = \delta(N(v)) \)

\[N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\} \]
clustering coefficient

in G and in S:

density of the neighborhood

\[cc(v) = \delta(N(v)) \]

\[
N(d) = ([2, 3] \cup [5, 10]) \times \{b\} \cup [5.5, 9] \times \{c\}
\]

\[
cc(d) = \delta(N(d)) = \frac{|[6,9]|}{|[5.5,9]|} = \frac{6}{7}
\]
in G:

from a to d:
$(a, b), (b, c), (c, d)$
length: 3

→ shortest paths

in S:

from $(1, d)$ to $(9, c)$:
$(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)$
length: 4
duration: 6
→ shortest paths
→ fastest paths
in G: from a to d: $(a, b), (b, c), (c, d)$
length: 3
→ shortest paths

in S:
from $(1, d)$ to $(9, c)$: $(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)$
length: 4
duration: 6
→ shortest paths
→ fastest paths
betweenness centrality

in G:

\[b(v) = \text{fraction of shortest paths from any } u \text{ to any } w \text{ in } V \text{ that involve } v \]

in S:

\[b(t, v) = \text{fraction of shortest fastest paths from any } (i, u) \text{ to any } (j, w) \text{ in } W \text{ that involve } (t, v) \]
betweenness centrality

in G:

$$b(v) = \text{fraction of shortest paths from any } u \text{ to any } w \text{ in } V \text{ that involve } v$$

in S:

$$b(t, v) = \text{fraction of shortest fastest paths from any } (i, u) \text{ to any } (j, w) \text{ in } W \text{ that involve } (t, v)$$
many other concepts
relations vs interactions

graph/networks = relations
(like friendship)

dynamic graphs/networks = evolution of relations
(like new friends)

stream graphs / link streams = interactions
(like face-to-face contacts)

interactions = traces realiztion of relations?
link streams = traces of graphs/networks?

relations = consequences of interactions?
graphs/networks = traces of link streams?
we provide a language (set of concepts) that:

- makes it easy to deal with interaction traces,
- combines structure and dynamics in a consistent way,
- generalizes graphs / networks; signals / time series?
- meets classical and new algorithmic challenges,
- opens new perspectives for data analysis,
- clarifies the interplay interactions \(\leftrightarrow \) relations.

studies in progress: internet traffic, financial transactions, mobility/contacts, mailing-lists, sales, etc.
calls for papers

special issues of international journals

Theoretical Computer Science (TCS)

Link Streams: models and algorithms

Computer Networks

Link Streams: methods and case studies

deadline: July 1st

http://link-streams.com